Biohybrid catalysts for sequential one-pot reactions based on an engineered transmembrane protein

  Dr. Daniel Sauer Copyright: © BioVI Dr. Daniel Sauer

D. F. Sauer, Y. Qu, M. A. S. Mertens, J. Schiffels, T. Polen, U. Schwaneberg*, J. Okuda*, Catal. Sci. Tech. 2019, 9, 942-946. DOI: 10.1039/C8CY02236D

Compartmentalization of organometallic catalysts was achieved by generation of their corresponding biohybrid catalysts based on the transmembrane protein FhuA to enable cascade reactions.

  Scheme of biohybrid catalysed one-pot reaction Copyright: © Catal. Sci. Tech. Synthesis of bibenzyl derivatives starting from styrene derivatives in a two-step one-pot fashion

In the present publication we showed that incorporation of organometallic catalysts into protein scaffolds enable cascade reactions in one pot, which were not possible by simply mixing the protein free catalysts. Bibenzyl derivatives (1,2-diphenylethane derivatives), which are valuable compounds in drug design or are used as building blocks in natural compound synthesis, were synthesized starting from styrene derivatives. In the first step, olefin cross-metathesis of the styrene derivatives was performed with a Ru-based Grubbs-Hoveyda type catalyst. In the subsequent step, hydrogenation of the stilbene intermediate was achieved with a Rh-type catalyst without isolation of the stilbene. This route was not possible by simply mixing the two organometallic catalysts in one pot. The strategy to compartmentalize the organometallic catalysts with proteins is promising approach and offers the possibility to keep reactions in a homogeneous fashion. The latter removes diffusion barriers through mass transfer between phases. This work was conducted in the division Next Generation Biocatalysis in cooperation with Professor Jun Okuda (Institute of Inorganic Chemistry, RWTH Aachen University). This research was financially supported by the DFG and the BMBF. A generous gift of metal precursors by Umicore, Frankfurt, is acknowledged.