Science praises our recent research on plant pest management

  Rainfast plant protection from disease by surface functionalizing dipeptides Copyright: © Green Chemistry Rainfast plant protection from disease by surface functionalizing dipeptides

The BiFuProt surface coating platform was highly appreciated in a recent news article published by Science as a new plant protection technology. The Science article quoted leading plant scientists. "With the current scale of the soybean rust problem, and the rapid evolution of resistance against multiple fungicides, any addition to the toolbox would be welcome," says Nichola Hawkins at Rothamsted Research in Harpenden, U.K. and Ralph Hückelhoven at the Technical University of Munich in Germany is quoted that the BiFuProt-technology is promising and "It opens a treasure box of solutions".

The protection of crops by pesticides is often challenging due to a very low persistence time and low rain fastness on the plant surface. A reduction of pesticide usage while preserving crop productivity demands new strategies for pest and disease control. In our current research highlight published in Green Chemistry we developed a platform technology that enables the functionalization of the aerial crop surface for sustainable disease management. We demonstrated an alternative way to protect soybean leaves from its most severe disease, the Asian soybean rust (Phakopsora pachyrhizi), by functionalizing the leaves with bifunctional fusion proteins or in short BiFuProts.

"With the current scale of the soybean rust problem, and the rapid evolution of resistance against multiple fungicides, any addition to the toolbox would be welcome."

- Nichola Hawkins (Rothamsted Research, Harpenden, Großbritannien)

The first domain binds to the wax layers of plant leaves, the second domain prevents the germination of Phakopsora pachyrhizi spores. In detail, the amphiphilic anchor peptides LCI, Thanatin, Tachystatin A2, and Lactoferricin B were genetically fused to the reporter protein eGFP and investigated for plant leaf binding. eGFP-LCI and eGFP-Thanatin strongly bound in a rainfast manner to the surface of soybean, barley, and corn leaves. Especially, eGFP-Thanatin bound to the soybean leaves and withstood high temperature, sunlight, and biotic degradation for at least 17 days. The weak binding of eGFP-Thanatin and eGFP-LCI to the wax-depleted mutant of barley or corn leaves indicated that the peptides mainly bind to the surface waxes of leaves. As a fusion partner for Thanatin, the antimicrobial peptide Dermaseptin 01 was selected. The bifunctional peptide Dermaseptin 01-Thanatin inhibited the germination of Phakopsora pachyrhizi spores in vitro and reduces Asian soybean rust disease by in a rainfast manner. It is very likely that state-of-the-art protein engineering strategies such as PePevo combined with a KnowVolution campaign will enable the design of peptides with tuned binding strength and persistence to match application demands. We expect that bifunctional peptides or proteins consisting of plant-attaching anchor peptides and pesticidal peptides or proteins have the potential to fight essentially any plant pest and disease in a rainfast manner.

This innovative research was performed in the framework of Bioeconomy Science Center (BioSC), which was funded by the Ministry of Culture and Science of the German State of North Rhine-Westphalia under the NRW Strategy Project BioSC. The BOOST FUND Project BiFuProts (Bifunctional fusion proteins for plant protection) team comprised Professor Ulrich Schwaneberg and Dr. Felix Jakob (initiator/coordinator; RWTH Aachen), Professor Uwe Conrath and Dr. Caspar Langenbach (RWTH Aachen University), Professor Lutz Schmitt (Heinrich-Heine-University Düsseldorf) and Professor Georg Noga, Dr. Mauricio Husche, and Dr. Shyam Pariyar (University of Bonn)

"It opens a treasure box of solutions".

- Ralph Hückelhoven (Technical University of Munich, Germany)

Plant health has already been an emerging research field within the Schwaneberg group in collaboration with plant scientist and chemists in last five year. The plant nutrient release technology (GreenGel) was successfully demonstrated on the example of cucumber iron deficiency in the BioSC funded project GreenGel. Dr. Felix Jakob and Professor Schwaneberg (coordinator; RWTH Aachen) were teamed up in GreenGel project with Professor Pich (RWTH Aachen University) and Professor Goldbach (University of Bonn). The GreenRelease technology is based on the compound loaded microgels (containers) that are decorated with plant adhesion promoting peptides and was published in Angewandte Chemie as hot paper in 2017. Based on the success of GreenGel and BiFuProts, the FocusLab greenRelease for Plant Health FocusLab has been funded (2.3 Mio€; for three years from January 2018 onwards) for translational research. The FocusLab is a part of BioSC as well and we teamed up with the groups of Professor Pich (RWTH Aachen University), Professor Conrath (RWTH Aachen University), Professor Noga (University of Bonn), Professor. Bröring (University of Bonn), Professor Knief (University of Bonn), Professor Groth (HHU Düsseldorf), Professor Gohlke (HHU Düsseldorf), and Professor Schurr (Forschungszentrum Jülich) to perform groundbreaking research in the field of plant health and protection in the upcoming years.