Towards evolution of artificial metalloenzymes – A protein engineer’s perspective

  Photos of Ulrich Markel and Daniel Sauer Copyright: © BioVI

Ulrich Markel,# Daniel F. Sauer,# Johannes Schiffels, Jun Okuda, and Ulrich Schwaneberg, Ang. Chem. Int. Ed., 2018 , DOI: 10.1002/ange.201811042

In the present publication, an overview of the early approaches of directed evolution of biohybrid catalyst is given.

  Scheme of directed evolution of biohybrid catalysts Copyright: © Ang. Chem. Directed evolution of artificial metalloenzymes/biohybrid catalysts. In contrast to the directed evolution of natural enzymes, the directed evolution of artificial metalloenzymes/biohybrid catalysts requires two additional steps (orange).

The incorporation of artificial metal-cofactors into protein scaffolds yields a new class of catalysts termed biohybrid catalysts or artificial metalloenzymes. In addition to modification of the artificial cofactor, these biohybrid catalysts can be modified at the second coordination sphere provided by the protein scaffold. Protein engineering provides tremendous potential to tailor such biohybrid catalysts but requires a robust screening system and sophisticated metal cofactor conjugation. In this minireview, we give an overview of the recent efforts in this field. We describe high-throughput screening methods applied for the directed evolution of biohybrid catalysts and we illustrate how non-chiral catalysts catalyze reactions enantioselectively by highlighting the first successes in this emerging field. Furthermore, we summarize the potential and limitations that need to be overcome to advance from biohybrid catalysts to true artificial metalloenzymes.

We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) through the International Research Training Group ‘Selectivity in Chemo- and Biocatalysis’ (SeleCa) and the Bundesministerium für Bildung und Forschung (BMBF) (FKZ: 031B0297). #: These authors contributed equally